3.4.87 \(\int \frac {\cosh ^4(e+f x)}{(a+b \sinh ^2(e+f x))^{3/2}} \, dx\) [387]

Optimal. Leaf size=244 \[ -\frac {(a-b) \cosh (e+f x) \sinh (e+f x)}{a b f \sqrt {a+b \sinh ^2(e+f x)}}-\frac {(2 a-b) E\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{a b^2 f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {F\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{a b f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {(2 a-b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{a b^2 f} \]

[Out]

-(a-b)*cosh(f*x+e)*sinh(f*x+e)/a/b/f/(a+b*sinh(f*x+e)^2)^(1/2)-(2*a-b)*(1/(1+sinh(f*x+e)^2))^(1/2)*(1+sinh(f*x
+e)^2)^(1/2)*EllipticE(sinh(f*x+e)/(1+sinh(f*x+e)^2)^(1/2),(1-b/a)^(1/2))*sech(f*x+e)*(a+b*sinh(f*x+e)^2)^(1/2
)/a/b^2/f/(sech(f*x+e)^2*(a+b*sinh(f*x+e)^2)/a)^(1/2)+(1/(1+sinh(f*x+e)^2))^(1/2)*(1+sinh(f*x+e)^2)^(1/2)*Elli
pticF(sinh(f*x+e)/(1+sinh(f*x+e)^2)^(1/2),(1-b/a)^(1/2))*sech(f*x+e)*(a+b*sinh(f*x+e)^2)^(1/2)/a/b/f/(sech(f*x
+e)^2*(a+b*sinh(f*x+e)^2)/a)^(1/2)+(2*a-b)*(a+b*sinh(f*x+e)^2)^(1/2)*tanh(f*x+e)/a/b^2/f

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 244, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {3271, 424, 545, 429, 506, 422} \begin {gather*} -\frac {(2 a-b) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)} E\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right )}{a b^2 f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {\text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)} F\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right )}{a b f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {(2 a-b) \tanh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{a b^2 f}-\frac {(a-b) \sinh (e+f x) \cosh (e+f x)}{a b f \sqrt {a+b \sinh ^2(e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cosh[e + f*x]^4/(a + b*Sinh[e + f*x]^2)^(3/2),x]

[Out]

-(((a - b)*Cosh[e + f*x]*Sinh[e + f*x])/(a*b*f*Sqrt[a + b*Sinh[e + f*x]^2])) - ((2*a - b)*EllipticE[ArcTan[Sin
h[e + f*x]], 1 - b/a]*Sech[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/(a*b^2*f*Sqrt[(Sech[e + f*x]^2*(a + b*Sinh[e
+ f*x]^2))/a]) + (EllipticF[ArcTan[Sinh[e + f*x]], 1 - b/a]*Sech[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/(a*b*f*
Sqrt[(Sech[e + f*x]^2*(a + b*Sinh[e + f*x]^2))/a]) + ((2*a - b)*Sqrt[a + b*Sinh[e + f*x]^2]*Tanh[e + f*x])/(a*
b^2*f)

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 424

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a*d - c*b)*x*(a + b*x^n)^(
p + 1)*((c + d*x^n)^(q - 1)/(a*b*n*(p + 1))), x] - Dist[1/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)
^(q - 2)*Simp[c*(a*d - c*b*(n*(p + 1) + 1)) + d*(a*d*(n*(q - 1) + 1) - b*c*(n*(p + q) + 1))*x^n, x], x], x] /;
 FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, n, p, q
, x]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 3271

Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[ff*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])), Subst[Int[(1 - ff^2*x^2)^((m - 1)/2
)*(a + b*ff^2*x^2)^p, x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] &&  !IntegerQ
[p]

Rubi steps

\begin {align*} \int \frac {\cosh ^4(e+f x)}{\left (a+b \sinh ^2(e+f x)\right )^{3/2}} \, dx &=\frac {\left (\sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {\left (1+x^2\right )^{3/2}}{\left (a+b x^2\right )^{3/2}} \, dx,x,\sinh (e+f x)\right )}{f}\\ &=-\frac {(a-b) \cosh (e+f x) \sinh (e+f x)}{a b f \sqrt {a+b \sinh ^2(e+f x)}}+\frac {\left (\sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {a+(2 a-b) x^2}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{a b f}\\ &=-\frac {(a-b) \cosh (e+f x) \sinh (e+f x)}{a b f \sqrt {a+b \sinh ^2(e+f x)}}+\frac {\left (\sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{b f}+\frac {\left ((2 a-b) \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{a b f}\\ &=-\frac {(a-b) \cosh (e+f x) \sinh (e+f x)}{a b f \sqrt {a+b \sinh ^2(e+f x)}}+\frac {F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{a b f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {(2 a-b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{a b^2 f}-\frac {\left ((2 a-b) \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {\sqrt {a+b x^2}}{\left (1+x^2\right )^{3/2}} \, dx,x,\sinh (e+f x)\right )}{a b^2 f}\\ &=-\frac {(a-b) \cosh (e+f x) \sinh (e+f x)}{a b f \sqrt {a+b \sinh ^2(e+f x)}}-\frac {(2 a-b) E\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{a b^2 f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{a b f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {(2 a-b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{a b^2 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.45, size = 155, normalized size = 0.64 \begin {gather*} \frac {-2 i a (2 a-b) \sqrt {\frac {2 a-b+b \cosh (2 (e+f x))}{a}} E\left (i (e+f x)\left |\frac {b}{a}\right .\right )+(a-b) \left (4 i a \sqrt {\frac {2 a-b+b \cosh (2 (e+f x))}{a}} F\left (i (e+f x)\left |\frac {b}{a}\right .\right )-\sqrt {2} b \sinh (2 (e+f x))\right )}{2 a b^2 f \sqrt {2 a-b+b \cosh (2 (e+f x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cosh[e + f*x]^4/(a + b*Sinh[e + f*x]^2)^(3/2),x]

[Out]

((-2*I)*a*(2*a - b)*Sqrt[(2*a - b + b*Cosh[2*(e + f*x)])/a]*EllipticE[I*(e + f*x), b/a] + (a - b)*((4*I)*a*Sqr
t[(2*a - b + b*Cosh[2*(e + f*x)])/a]*EllipticF[I*(e + f*x), b/a] - Sqrt[2]*b*Sinh[2*(e + f*x)]))/(2*a*b^2*f*Sq
rt[2*a - b + b*Cosh[2*(e + f*x)]])

________________________________________________________________________________________

Maple [A]
time = 1.72, size = 334, normalized size = 1.37

method result size
default \(-\frac {\sqrt {-\frac {b}{a}}\, a \left (\cosh ^{2}\left (f x +e \right )\right ) \sinh \left (f x +e \right )-\sqrt {-\frac {b}{a}}\, b \left (\cosh ^{2}\left (f x +e \right )\right ) \sinh \left (f x +e \right )+a \sqrt {\frac {b \left (\cosh ^{2}\left (f x +e \right )\right )}{a}+\frac {a -b}{a}}\, \sqrt {\frac {\cosh \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \EllipticF \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right )-b \sqrt {\frac {b \left (\cosh ^{2}\left (f x +e \right )\right )}{a}+\frac {a -b}{a}}\, \sqrt {\frac {\cosh \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \EllipticF \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right )-2 \sqrt {\frac {b \left (\cosh ^{2}\left (f x +e \right )\right )}{a}+\frac {a -b}{a}}\, \sqrt {\frac {\cosh \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \EllipticE \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) a +b \sqrt {\frac {b \left (\cosh ^{2}\left (f x +e \right )\right )}{a}+\frac {a -b}{a}}\, \sqrt {\frac {\cosh \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \EllipticE \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right )}{b \sqrt {-\frac {b}{a}}\, a \cosh \left (f x +e \right ) \sqrt {a +b \left (\sinh ^{2}\left (f x +e \right )\right )}\, f}\) \(334\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(f*x+e)^4/(a+b*sinh(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-((-1/a*b)^(1/2)*a*cosh(f*x+e)^2*sinh(f*x+e)-(-1/a*b)^(1/2)*b*cosh(f*x+e)^2*sinh(f*x+e)+a*(b/a*cosh(f*x+e)^2+(
a-b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticF(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))-b*(b/a*cosh(f*x+e)^2+(a-
b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticF(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))-2*(b/a*cosh(f*x+e)^2+(a-b)
/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticE(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*a+b*(b/a*cosh(f*x+e)^2+(a-b)
/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticE(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2)))/b/(-1/a*b)^(1/2)/a/cosh(f*x
+e)/(a+b*sinh(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(f*x+e)^4/(a+b*sinh(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(cosh(f*x + e)^4/(b*sinh(f*x + e)^2 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]
time = 0.10, size = 55, normalized size = 0.23 \begin {gather*} {\rm integral}\left (\frac {\sqrt {b \sinh \left (f x + e\right )^{2} + a} \cosh \left (f x + e\right )^{4}}{b^{2} \sinh \left (f x + e\right )^{4} + 2 \, a b \sinh \left (f x + e\right )^{2} + a^{2}}, x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(f*x+e)^4/(a+b*sinh(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sinh(f*x + e)^2 + a)*cosh(f*x + e)^4/(b^2*sinh(f*x + e)^4 + 2*a*b*sinh(f*x + e)^2 + a^2), x)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(f*x+e)**4/(a+b*sinh(f*x+e)**2)**(3/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 4848 deep

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(f*x+e)^4/(a+b*sinh(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

Exception raised: RuntimeError >> An error occurred running a Giac command:INPUT:sage2OUTPUT:Unable to divide,
 perhaps due to rounding error%%%{32,[4,2,4]%%%}+%%%{%%%{-64,[1]%%%},[4,2,3]%%%}+%%%{%%%{32,[2]%%%},[4,2,2]%%%
}+%%%{%%%{-64,

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\mathrm {cosh}\left (e+f\,x\right )}^4}{{\left (b\,{\mathrm {sinh}\left (e+f\,x\right )}^2+a\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(e + f*x)^4/(a + b*sinh(e + f*x)^2)^(3/2),x)

[Out]

int(cosh(e + f*x)^4/(a + b*sinh(e + f*x)^2)^(3/2), x)

________________________________________________________________________________________